Cigarette Smoke Induced Airway Inflammation Is Independent of NF-κB Signalling
نویسندگان
چکیده
RATIONALE COPD is an inflammatory lung disease largely associated with exposure to cigarette smoke (CS). The mechanism by which CS leads to the pathogenesis of COPD is currently unclear; it is known however that many of the inflammatory mediators present in the COPD lung can be produced via the actions of the transcription factor Nuclear Factor-kappaB (NF-κB) and its upstream signalling kinase, Inhibitor of κB kinase-2 (IKK-2). Therefore the NF-κB/IKK-2 signalling pathway may represent a therapeutic target to attenuate the inflammation associated with COPD. AIM To use a range of assays, genetically modified animals and pharmacological tools to determine the role of NF-κB in CS-induced airway inflammation. METHODS NF-κB pathway activation was measured in pre-clinical models of CS-induced airway inflammation and in human lung tissue from COPD patients. This data was complemented by employing mice missing a functional NF-κB pathway in specific cell types (epithelial and myeloid cells) and with systemic inhibitors of IKK-2. RESULTS We showed in an airway inflammation model known to be NF-κB-dependent that the NF-κB pathway activity assays and modulators were functional in the mouse lung. Then, using the same methods, we demonstrated that the NF-κB pathway appears not to play an important role in the inflammation observed after exposure to CS. Furthermore, assaying human lung tissue revealed that in the clinical samples there was also no increase in NF-κB pathway activation in the COPD lung, suggesting that our pre-clinical data is translational to human disease. CONCLUSIONS In this study we present compelling evidence that the IKK-2/NF-κB signalling pathway does not play a prominent role in the inflammatory response to CS exposure and that this pathway may not be important in COPD pathogenesis.
منابع مشابه
Cigarette smoke extract-induced p120-mediated NF-κB activation in human epithelial cells is dependent on the RhoA/ROCK pathway
Cigarette smoke exposure is a major cause of chronic obstructive pulmonary disease (COPD), but the underlying molecular inflammatory mechanisms remain poorly understood. Previous studies have found that smoke disrupts cell-cell adhesion by inducing epithelial barrier damage to the adherens junction proteins, primarily E-cadherin (E-cad) and p120-catenin (p120). Recently, the anti-inflammatory r...
متن کاملCeramide-1-phosphate inhibits cigarette smoke-induced airway inflammation.
Sphingolipids are involved in the pathogenesis of inflammatory diseases. The central molecule is ceramide, which can be converted into ceramide-1-phosphate (C1P). Although C1P can exert anti- and pro-inflammatory effects, its influence on cigarette smoke (CS)-induced lung inflammation is unknown. We aimed to clarify the role of C1P in the pathogenesis of CS-triggered pulmonary inflammation and ...
متن کاملInhibition of endoplasmic reticulum stress alleviates cigarette smoke-induced airway inflammation and emphysema
Chronic bronchitis and emphysema are pathologic features of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS)-induced endoplasmic reticulum (ER) stress has been implicated in the COPD development, but the molecular mechanism by which it contributes to COPD etiology and the specific role it plays in COPD pathogenesis remain poorly understood. Here, we aimed to determine the role...
متن کاملGinsenoside Rg1 alleviates pulmonary inflammation caused by cigarette smoke-induced COPD
Ginsenoside Rg1, the major effective component in ginseng, has been reported to have potent antiinflammatory properties. However, the effect of Rg1 on pulmonary inflammation caused by exposure to cigarette smoke (CS) has not been investigated. In this study, we examined the molecular mechanisms underlying the effect of Rg1 on CS-induced inflammation using a mouse model. We found that inflammato...
متن کاملProtective role for club cell secretory protein-16 (CC16) in the development of COPD.
Club cell secretory protein-16 (CC16) is the major secreted product of airway club cells, but its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) is unclear. We measured CC16 airway expression in humans with and without COPD and CC16 function in a cigarette smoke (CS)-induced COPD murine model. Airway CC16 expression was measured in COPD patients, smokers without COPD a...
متن کامل